Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Adv ; 14(19): 13565-13582, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665501

RESUMO

The constant demand for biocompatible and non-invasive materials for regenerative medicine in accidents and various diseases has driven the development of innovative biomaterials that promote biomedical applications. In this context, using sol-gel and ionotropic gelation methods, zinc oxide nanoparticles (NPs-ZnO) and chitosan nanoparticles (NPs-CS) were synthesized with sizes of 20.0 nm and 11.98 nm, respectively. These nanoparticles were incorporated into chitosan scaffolds through the freeze-drying method, generating a porous morphology with small (<100 µm), medium (100-200 µm), and large (200-450 µm) pore sizes. Moreover, the four formulations showed preliminary bioactivity after hydrolytic degradation, facilitating the formation of a hydroxyapatite (HA) layer on the scaffold surface, as evidenced by the presence of Ca (4%) and P (5.1%) during hydrolytic degradation. The scaffolds exhibited average antibacterial activity of F1 = 92.93%, F2 = 99.90%, F3 = 74.10%, and F4 = 88.72% against four bacterial strains: K. pneumoniae, E. cloacae, S. enterica, and S. aureus. In vivo, evaluation confirmed the biocompatibility of the functionalized scaffolds, where F2 showed accelerated resorption attributed to the NPs-ZnO. At the same time, F3 exhibited controlled degradation with NPs-CS acting as initiation points for degradation. On the other hand, F4 combined NPs-CS and NPs-ZnO, resulting in progressive degradation, reduced inflammation, and an organized extracellular matrix. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.

2.
Polim Med ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545926

RESUMO

BACKGROUND: There is a lack of studies evaluating the toxicity of nitric oxide (NO) precursors in chitosan/L-arginine hydrogels and their topical administration. However, clarifying the characteristics of these elements is essential for their possible use in non-surgical techniques of tooth movement acceleration. Such characteristics include interaction with different cell types, metabolism and drug safety. OBJECTIVES: This in vitro study aimed to assess the cytotoxicity of chitosan hydrogels on human HeLa cells using different concentrations of L-arginine. MATERIAL AND METHODS: The hydrogels were synthesized in a materials engineering laboratory, with a controlled environment, using 4 different L-arginine concentrations of 0%, 10%, 15%, and 20%. Once the hydrogels were prepared, their physical and chemical properties were characterized, and viability analysis was performed using 2 different methods, including a 48-h assay with Artemia salina nauplii and a 24-h cell culture with human HeLa cells followed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) proliferation assay. Data analysis was performed using a Mann-Whitney U test to evaluate positive and negative controls in the cell culture, with a significance level of 0.01. A Wilcoxon paired test contrasted the 24-h compared to 48-h Artemia salina assays, with a Kruskal-Wallis and post hoc Dunn test used to compare groups using a significance level of 0.05. RESULTS: In the more viscous hydrogels, Artemia salina nauplii decreased drastically in 24 h, while the 15% and 20% hydrogels had no statistical differences from the negative control. The 10% and 20% hydrogels were statistically different from the negative control when comparing cell culture data. CONCLUSIONS: Our findings suggest that chitosan/L-arginine hydrogels could be used in humans without toxic effects. However, more trials and tests are needed to evaluate tooth movement rate during orthodontic treatment.

3.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257194

RESUMO

Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.


Assuntos
Grafite , Neoplasias do Colo do Útero , Humanos , Feminino , Grafite/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Óxidos/farmacologia
4.
Pharmaceutics ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37765166

RESUMO

The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.

6.
Biomater Adv ; 153: 213578, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572597

RESUMO

Calcium oxide nanoparticles (n-CaO) ca. 22 nm were obtained from eggshell waste. The n-CaO was incorporated into the PLA matrix in 10 and 20 wt% of filler content by electrospinning process to get PLA/n-CaO fibers with homogenous morphology and diameter as a potential use in scaffold for bone tissue regeneration. The incorporation of n-CaO into PLA modifies the mechanical properties, having a reinforcement effect on the matrix. The Young modulus for PLA/n-CaO nanocomposites increased between 122 and 138 % concerning neat PLA fibers, showing a more rigid behavior. The PLA/n-CaO nanocomposite fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after seven days in SBF solution. The biocidal and biological properties of PLA/n-Cao with 20 wt% showed a 30 % reduction in bacterial viability against S. aureus and 11 % against E. coli after 6 h of bacterial exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, allowing cell adhesion and proliferation in the RPMI medium. The PLA/n-CaO with 20 wt% of nanoparticles showed a higher capacity to promote osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after seven days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of the prepared scaffolds; the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material, improving the healing process. These results validated using n-CaO to enhance the functionality of polymer matrices as a PLA, bringing bioactive, biocide, and biocompatible properties, opening a new and interesting route to develop new biomaterials as a scaffold for bone tissue engineering.


Assuntos
Nanocompostos , Nanocompostos/química , Elétrons , Osso e Ossos/química , Staphylococcus aureus , Escherichia coli , Animais , Camundongos , Linhagem Celular , Sobrevivência Celular , Alicerces Teciduais
7.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571109

RESUMO

This research focused on developing new materials for endodontic treatments to restore tissues affected by infectious or inflammatory processes. Three materials were studied, namely tricalcium phosphate ß-hydroxyapatite (ß-TCP), commercial and natural hydroxyapatite (HA), and chitosan (CS), in different proportions. The chemical characterization using infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the composition of the composite. Scanning electron microscopy (SEM) demonstrated that the design and origin of the HA, whether natural or commercial, did not affect the morphology of the composites. In vitro studies using Artemia salina (A. salina) indicated that all three experimental materials were biocompatible after 24 h, with no significant differences in mortality rate observed among the groups. The subdermal implantation of the materials in block form exhibited biocompatibility and biodegradability after 30 and 60 days, with the larger particles undergoing fragmentation and connective tissue formation consisting of collagen type III fibers, blood vessels, and inflammatory cells. The implanted material continued to undergo resorption during this process. The results obtained in this research contribute to developing endodontic technologies for tissue recovery and regeneration.

8.
Polymers (Basel) ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232016

RESUMO

Tissue accidents provide numerous pathways for pathogens to invade and flourish, causing additional harm to the host tissue while impeding its natural healing and regeneration. Essential oils (EOs) exhibit rapid and effective antimicrobial properties without promoting bacterial resistance. Clove oils (CEO) demonstrate robust antimicrobial activity against different pathogens. Chitosan (CS) is a natural, partially deacetylated polyamine widely recognized for its vast antimicrobial capacity. In this study, we present the synthesis of four membrane formulations utilizing CS, polyvinyl alcohol (PVA), and glycerol (Gly) incorporated with CEO and nanobioglass (n-BGs) for applications in subdermal tissue regeneration. Our analysis of the membranes' thermal stability and chemical composition provided strong evidence for successfully blending polymers with the entrapment of the essential oil. The incorporation of the CEO in the composite was evidenced by the increase in the intensity of the band of C-O-C in the FTIR; furthermore, the increase in diffraction peaks, as well as the broadening, provide evidence that the introduction of CEO perturbed the crystal structure. The morphological examination conducted using scanning electron microscopy (SEM) revealed that the incorporation of CEO resulted in smooth surfaces, in contrast to the porous morphologies observed with the n-BGs. A histological examination of the implanted membranes demonstrated their biocompatibility and biodegradability, particularly after a 60-day implantation period. The degradation process of more extensive membranes involved connective tissue composed of type III collagen fibers, blood vessels, and inflammatory cells, which supported the reabsorption of the composite membranes, evidencing the material's biocompatibility.

9.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144483

RESUMO

Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.


Assuntos
Substitutos Ósseos , Amidas , Animais , Regeneração Óssea , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Bovinos , Colágeno/química , Durapatita/química , Durapatita/farmacologia , Xenoenxertos , Humanos , Masculino , Ratos , Ratos Wistar
10.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145994

RESUMO

The use of biopolymers for tissue engineering has recently gained attention due to the need for safer and highly compatible materials. Starch is one of the most used biopolymers for membrane preparation. However, incorporating other polymers into starch membranes introduces improvements, such as better thermal and mechanical resistance and increased water affinity, as we reported in our previous work. There are few reports in the literature on the biocompatibility of starch/chicken gelatin composites. We assessed the in vivo biocompatibility of the five composites (T1-T5) cassava starch/gelatin membranes with subdermal implantations in biomodels at 30, 60, and 90 days. The FT-IR spectroscopy analysis demonstrated the main functional groups for starch and chicken gelatin. At the same time, the thermal study exhibited an increase in thermal resistance for T3 and T4, with a remaining mass (~15 wt.%) at 800 °C. The microstructure analysis for the T2-T4 demonstrated evident roughness changes with porosity presence due to starch and gelatin mixture. The decrease in the starch content in the composites also decreased the gelatinization heats for T3 and T4 (195.67, 196.40 J/g, respectively). Finally, the implantation results demonstrated that the formulations exhibited differences in the degradation and resorption capacities according to the starch content, which is easily degraded by amylases. However, the histological results showed that the samples demonstrated almost complete reabsorption without a severe immune response, indicating a high in vivo biocompatibility. These results show that the cassava starch/chicken gelatin composites are promising membrane materials for tissue engineering applications.

11.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808724

RESUMO

Bone substitutes based on xenografts have been used for a long time in bone regeneration thanks to their inductive capacity for bone tissue regeneration. Some bone-based scaffolds have been modified by adding collagen and other proteins to improve their regenerative capacity and prevent migration and aggregation, especially particles. However, rejection of this graft has been reported due to protein residues caused by poor material preparation. We compared the in vitro and in vivo biological response of two commercial xenografts (InterOss®, F1 and InterOss® Collagen, F2) and a commercial porcine collagen membrane (InterCollagen® Guide, F3) as a rapid degradation control. Fourier Transform Infrared Spectroscopy (FT-IR) analysis evidenced the presence of hydroxyl, orthophosphate, and carbonate groups of the xenografts and amide groups of collagen. Thermogravimetric analysis (TGA) of the xenografts demonstrated their thermal stability and the presence of a few amounts of organic material. The study by differential scanning calorimetry showed the presence of endothermic peaks typical of the dehydration of the xenografts (F1 and F2) and for the collagen membrane (F3), the beginning of structural three-dimensional protein changes. Subsequently, in vitro biocompatibility tests were carried out for the materials with Artemia salina and MTT cell viability with HeLa cells, demonstrating the high biocompatibility of the materials. Finally, in vivo biocompatibility was studied by implanting xenografts in biomodels (Wistar rats) at different periods (30, 60, and 90 days). The F1 xenograft (InterOss) remained remarkably stable throughout the experiment (90 days). F2 (InterOss Collagen) presented a separation of its apatite and collagen components at 60 days and advanced resorption at 90 days of implantation. Finally, the collagen membrane (F3) presented faster resorption since, at 90 days, only some tiny fragments of the material were evident. All the in vivo and in vitro test results demonstrated the biocompatibility of the xenografts, demonstrating the potential of these materials for tissue engineering.

12.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684575

RESUMO

Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol-gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle's intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.


Assuntos
Nanocompostos , Poliésteres , Escherichia coli , Células HeLa , Humanos , Nanocompostos/química , Poliésteres/química , Poliésteres/farmacologia , Engenharia Tecidual
13.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616482

RESUMO

The development of scaffolds for cell regeneration has increased because they must have adequate biocompatibility and mechanical properties to be applied in tissue engineering. In this sense, incorporating nanofillers or essential oils has allowed new architectures to promote cell proliferation and regeneration of new tissue. With this goal, we prepared four membranes based on polylactic acid (PLA), polycaprolactone (PCL), titanium dioxide nanoparticles (TiO2-NPs), and orange essential oil (OEO) by the drop-casting method. The preparation of TiO2-NPs followed the sol-gel process with spherical morphology and an average size of 13.39 nm ± 2.28 nm. The results show how the TiO2-NP properties predominate over the crystallization processes, reflected in the decreasing crystallinity percentage from 5.2% to 0.6% in the membranes. On the other hand, when OEO and TiO2-NPs are introduced into a membrane, they act synergistically due to the inclusion of highly conjugated thermostable molecules and the thermal properties of TiO2-NPs. Finally, incorporating OEO and TiO2-NPs promotes tissue regeneration due to the decrease in inflammatory infiltrate and the appearance of connective tissue. These results demonstrate the great potential for biomedical applications of the membranes prepared.

14.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678672

RESUMO

The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology. On the other hand, Fourier Transformed infrared spectroscopy (FTIR) showed characteristic functional groups for each composite component. The TTEO incorporation in the formulations was related to the increased intensity of the C-O-C band. The thermal properties of the materials show that the degradative properties of the ZnO-NPs decrease the thermal stability. The morphological study by scanning electron microscopy (SEM) showed that the presence of TTEO and ZnO-NPs act synergistically, obtaining smooth surfaces, whereas membranes with the presence of ZnO-NPs or TTEO only show porous morphologies. Histological implantation of the membranes showed biocompatibility and biodegradability after 60 days of implantation. This degradation occurs through the fragmentation of the larger particles with the presence of connective tissue constituted by type III collagen fibers, blood vessels, and inflammatory cells, where the process of resorption of the implanted material continues.

15.
Polymers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833175

RESUMO

New technologies based on nanocomposites of biopolymers and nanoparticles inspired by the nature of bone structure have accelerated their application in regenerative medicine, thanks to the introduction of reinforcing properties. Our research incorporated chitosan (CS) covalently crosslinked with glutaraldehyde (GLA) beads with graphene oxide (GO) nanosheets, titanium dioxide nanoparticles (TiO2), and blackberry processing waste extract (BBE) and evaluated them as partial bone substitutes. Skullbone defects in biomodels filled with the scaffolds showed evidence through light microscopy, scanning electron microscopy, histological studies, soft tissue development with hair recovery, and absence of necrotic areas or aggressive infectious response of the immune system after 90 days of implantation. More interestingly, newly formed bone was evidenced by elemental analysis and Masson trichromacy analysis, which demonstrated a possible osteoinductive effect from the beads using the critical size defect experimental design in the biomodels. The results of this research are auspicious for the development of bone substitutes and evidence that the technologies for tissue regeneration, including chitosan nanocomposites, are beneficial for the adhesion and proliferation of bone cells.

16.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771312

RESUMO

Tissue engineering is crucial, since its early adoption focused on designing biocompatible materials that stimulate cell adhesion and proliferation. In this sense, scaffolds made of biocompatible and resistant materials became the researchers' focus on biomedical applications. Humans have used essential oils for a long time to take advantage of their antifungal, insecticide, antibacterial, and antioxidant properties. However, the literature demonstrating the use of essential oils for stimulating biocompatibility in new scaffold designs is scarce. For that reason, this work describes the synthesis of four different film composites of chitosan/polyvinyl alcohol/tea tree (Melaleuca alternifolia), essential oil (CS/PVA/TTEO), and the subdermal implantations after 90 days in Wistar rats. According to the Young modulus, DSC, TGA, mechanical studies, and thermal studies, there was a reinforcement effect with the addition of TTEO. Morphology and energy-dispersive (EDX) analysis after the immersion in simulated body fluid (SBF) exhibited a light layer of calcium chloride and sodium chloride generated on the material's surface, which is generally related to a bioactive material. Finally, the biocompatibility of the films was comparable with porcine collagen, showing better signs of resorption as the amount of TTEO was increased. These results indicate the potential application of the films in long-term biomedical needs.

17.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272702

RESUMO

The development of new biocompatible materials for application in the replacement of deteriorated tissues (due to accidents and diseases) has gained a lot of attention due to the high demand around the world. Tissue engineering offers multiple options from biocompatible materials with easy resorption. Chitosan (CS) is a biopolymer derived from chitin, the second most abundant polysaccharide in nature, which has been highly used for cell regeneration applications. In this work, CS films and Ruta graveolens essential oil (RGEO) were incorporated to obtain porous and resorbable materials, which did not generate allergic reactions. An oil-free formulation (F1: CS) and three different formulations containing R. graveolens essential oil were prepared (F2: CS-RGEO 0.5%; F3: CS+RGEO 1.0%; and F4: CS+RGEO 1.5%) to evaluate the effect of the RGEO incorporation in the mechanical and thermal stability of the films. Infrared spectroscopy (FTIR) analyses demonstrated the presence of RGEO. In contrast, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis showed that the crystalline structure and percentage of CS were slightly affected by the RGEO incorporation. Interesting saturation phenomena were observed for mechanical and water permeability tests when RGEO was incorporated at higher than 0.5% (v/v). The results of subdermal implantation after 30 days in Wistar rats showed that increasing the amount of RGEO resulted in greater resorption of the material, but also more significant inflammation of the tissue surrounding the materials. On the other hand, the thermal analysis showed that the RGEO incorporation almost did not affect thermal degradation. However, mechanical properties demonstrated an understandable loss of tensile strength and Young's modulus for F3 and F4. However, given the volatility of the RGEO, it was possible to generate a slightly porous structure, as can be seen in the microstructure analysis of the surface and the cross-section of the films. The cytotoxicity analysis of the CS+RGEO compositions by the hemolysis technique agreed with in vivo results of the low toxicity observed. All these results demonstrate that films including crude essential oil have great application potential in the biomedical field.


Assuntos
Quitosana/química , Óleos Voláteis/química , Ruta/química , Adulto , Animais , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria/métodos , Módulo de Elasticidade , Humanos , Masculino , Permeabilidade , Porosidade , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Difração de Raios X/métodos , Adulto Jovem
18.
Rev. estomat. salud ; 28(2): 17-22, 2020.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1145695

RESUMO

Antecedentes: La Descodificación Biológica propone la correspondencia entre el estrés ante una situación desbordante y la aparición de síntomas. La ciencia ha logrado profundizar en los componentes biológicos de los trastornos del desarrollo que podrían explicar lo queocurre en algunos preceptos de esta teoría. Objetivo: Determinar a partir de la revisión de literatura científica, la relación entre el estrés y algunas hormonas, con las alteraciones craneofaciales. Materiales y métodos: Se realizó una búsqueda en SciELO, PubMed y SCOPUS buscando artículos relacionados conel estrés, trastornos fisiológicos y esqueléticos y la hormona de crecimiento. Resultados: Se encontraron 17 artículos que relacionan el estrés con alteraciones fisiológicas, 18 artículos que muestran del el papel de los el estrés en el sistema nervioso central y la alteración de la hormona de crecimiento, además 16 artículos que relacionan la hormona de crecimiento con alteraciones esqueléticas craneofaciales. Conclusión: Se encontró evidencia que muestran cómo algunos supuestos de la teoría de la "Descodificación biológica" pueden ser explicados a partir del papel del estrés y de los estresores que podrían estimular respuestas a nivel del sistema nervioso central y llevar a cambios en estructuras óseas en pacientes en periodo de crecimiento o maduración ósea.


Background: Biological Decoding proposes the correspondence between stress in an overwhelming situation and the appearance of symptoms. Science has managed to investigate into the biological components of developmental disorders that could explain what happens in some precepts of this theory. Objective: To determine from the review of scientific literature, the relationship between stress and some hormones, with craniofacial alterations.Materials and methods: A search was carried out in SciELO, PubMed and SCOPUS looking for articles related to stress, physiological and skeletal disorders and growth hormone. Results: 17 articles were found that relate stress with physiological alterations, 18 articles that show the role of stress in the central nervous system and alteration of growth hormone, in addition 16 articles that relate growth hormone with alterations craniofacial skeletal. Conclusion: Evidence was found that shows how some assumptions of the "biological decoding" theory can be explained from the role of stress and stressors that could stimulate responses at the level of the central nervous system and lead to changes in bone structures in patients in a period of bone growth or maturation.

19.
Int J Mol Sci ; 20(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208091

RESUMO

Acrylic bone cements (ABCs) have played a key role in orthopedic surgery mainly in arthroplasties, but their use is increasingly extending to other applications, such as remodeling of cancerous bones, cranioplasties, and vertebroplasties. However, these materials present some limitations related to their inert behavior and the risk of infection after implantation, which leads to a lack of attachment and makes necessary new surgical interventions. In this research, the physicochemical, thermal, mechanical, and biological properties of ABCs modified with chitosan (CS) and graphene oxide (GO) were studied. Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) scanning electron microscopy (SEM), Raman mapping, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), compression resistance, mechanical dynamic analysis (DMA), hydrolytic degradation, cell viability, alkaline phosphatase (ALP) activity with human osteoblasts (HOb), and antibacterial activity against Gram-negative bacteria Escherichia coli were used to characterize the ABCs. The results revealed good dispersion of GO nanosheets in the ABCs. GO provided an increase in antibacterial activity, roughness, and flexural behavior, while CS generated porosity, increased the rate of degradation, and decreased compression properties. All ABCs were not cytotoxic and support good cell viability of HOb. The novel formulation of ABCs containing GO and CS simultaneously, increased the thermal stability, flexural modulus, antibacterial behavior, and osteogenic activity, which gives it a high potential for its uses in orthopedic applications.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Cimentos Ósseos , Quitosana , Grafite , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Sobrevivência Celular , Quitosana/química , Grafite/química , Humanos , Fenômenos Mecânicos , Microscopia de Força Atômica , Nanocompostos/química , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
20.
Rev. cuba. invest. bioméd ; 31(3): 268-277, jul.-sep. 2012.
Artigo em Espanhol | LILACS | ID: lil-657900

RESUMO

La investigación se trata de la obtención de un biocompuesto a partir de una matriz cerámica y un polímero, con el fin de utilizarlo como relleno óseo. Se mezcló la matriz cerámica, fosfato tricálcico Ca (OH)2 y quitosana, polímero de origen natural. En el estudio se realizaron pruebas preliminares de mezclas para escoger 4 tipos de biocompuestos (BC1, BC2, BC3, BC4), con diferentes proporciones de los elementos de la matriz cerámica. Se trabajó en la preparación del biocompuesto con un pH entre 6,5 y 8,5 y un tiempo de secado entre 7 y 20 min. Se seleccionaron las mezclas óptimas para analizar sus propiedades mecánicas a partir de la prueba de la resistencia a la compresión. Se determinaron los valores de pH, los cuales estuvieron en un rango de 7,05 y 7,6. Igualmente se hallaron unos tiempos de secado que oscilaron entre 7 y 15 min, la pasta mantuvo una temperatura constante de 25 ºC y consistencia moldeable, condiciones que son apropiadas para su utilización como sustituto óseo. La muestra que obtuvo mejores propiedades en cuanto a pH, temperatura y tiempo de secado fue seleccionada para ser implantada en tibias de conejo para determinar la respuesta histológica después de 60 días...


The research deals with the development of a biocomposite from a ceramic matrix and a polymer with the purpose of using it as bone filler. A mixture was made of the ceramic matrix, tricalcium phosphate Ca (OH)2 and chitosan, a polymer of natural origin. The mixtures underwent preliminary testing to choose 4 types of biocomposites (BC1, BC2, BC3, BC4) with varying proportions of ceramic matrix elements. The biocomposite was prepared at a pH between 6.5 and 8.5. Drying time ranged between 7 and 20 minutes. Optimal samples were chosen and their mechanical properties analyzed by means of compression resistance testing. PH measurements showed values between 7.05 and 7.6, and drying times ranged between 7 and 15 minutes. The paste remained at a constant temperature of 25 ºC and maintained molding consistency. These properties are required for use as bone substitute. The sample exhibiting the best pH, temperature and drying time values was chosen for implantation in rabbit tibiae to verify the histological response after 60 days...

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...